Expression and purification of enzymatically active forms of the human lysyl oxidase-like protein 4.
نویسندگان
چکیده
The lysyl oxidase-like protein 4 (LOXL4) is the latest member of the emerging family of lysyl oxidases, several of which were shown to function as copper-dependent amine oxidases catalyzing lysine-derived cross-links in extracellular matrix proteins. LOXL4 contains four scavenger receptor cysteine-rich domains in addition to the characteristic domains of the LOX family, including the copper-binding domain, the cytokine receptor-like domain, and the residues of the lysyl-tyrosyl quinone cofactor. In an effort to assess its amine oxidase activity, we expressed LOXL4 as recombinant forms attached with hexa-histidine residues at the carboxyl terminus by using an Escherichia coli expression system. The recombinant proteins were purified with nickel-chelating affinity chromatography and converted into enzymatically active forms by stepwise dialysis. The purified LOXL4 proteins showed beta-aminopropionitrile-inhibitable activity of 0.022-0.032 units/mg toward a nonpeptidyl substrate, benzylamine. These results indicate that LOXL4, with the four scavenger receptor cysteine rich domains, may also function as an active amine oxidase. Availability of the pure and active forms of LOXL4 will be significantly helpful in functional studies related to substrate specificity and crystal structure of this amine oxidase, which should provide significant insights into functional differences within the LOX family members.
منابع مشابه
Production and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملExpression and Purification of enzymatically active forms of the human lysyl oxidase -
Genome Research Center for Birth Defects and Genetic Diseases, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, 388-1, Pungnap-2 Dong, Songpa-Gu, Seoul 138-736, Korea Cardiovascular Research Center, John A. Burns School of Medicine, University of Hawaii, 1993 East West Road, Honolulu, HI 96822, USA School of Life Sciences and Biotechnology, Korea U...
متن کاملCloning, Expression, Purification and CD Analysis of Recombinant Human Betatrophin
Betatrophin is a member of the angiopoietin-like (ANGPTL) family that has been implicated in both triglyceride and glucose metabolism. The physiological functions and molecular targets of this protein remain largely unknown; hence, a purified available protein would aid study of the exact role of betatrophin in lipid or glucose metabolism. In this study, we cloned the full-length cDNA of betatr...
متن کاملCloning, Expression, Purification and Immunoreactivity Analysis of Gag Derived Protein p17 from HIV-1 CRF35 in Fusion with Thioredoxin from Human Subjects
So far, recombinant antigens of HIV-1, the etiologic cause of Acquired Immunodeficiency Syndrome (AIDS), have been widely used for the diagnosis and vaccine development. P17 or the matrix protein formed by the proteolytic cleavage of gag is strongly antigenic and is as conserved and immunogenic as p24. In some cases, antibodies to p17 are more prevalent than antibodies to p24 and the decline in...
متن کاملLysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing
Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 52 شماره
صفحات -
تاریخ انتشار 2003